Atomic Structure

Electromagnetic Spectrum

©2008 Chez Chem, LLC All rights reserved.

Frequency x wavelenth = c

$$\lambda y = C$$

C = speed of light = $3.00 \times 10^8 \,\text{m s}^{-1}$

http://www.colorado.edu/physics/2000/waves_particles/lightspeed-1.html

$$\Delta E = hv$$

- h = Plank's constant 6.63 x 10⁻³⁴ J-s
- v = frequency
- Therefore, you can find energy with these:
 - $-\operatorname{If} v\lambda = c$ and $\Delta E = hv$
 - -Then $y=c/\lambda$ and $\Delta E = hc/\lambda$

DeBroglie's Hypothesis

The characteristic
 wavelength of the
 electron or of any other
 particle depends on its
 mass, w, and
 velocity, v.

 \rightarrow mv = momentum

 $-1J = 1kg m^2/s^2$

$$\lambda = \frac{h}{mv}$$

Rydberg equation

$$\bot \triangle E = 2.18 \times 10^{-18} \, J \left(\frac{1}{n_{initial}} - \frac{1}{n_{final}} \right)$$

- When n_f > n_i energy is absorbed
- $R_H = 1.10 \times 10^7 / m$
- When n_i > n_f energy is emitted
- Note: Can change R_H to negative if changed to final initial
- The more negative R_H the more stable

- Hydrogen
 - Most stable if n=1
 - If n > 1 the atom is said to be electronically excited

Quanta

- An object can gain or lose energy by absorbing or emitting radiant energy
- The smallest increment of energy at a given frequency, hv, is called a QUANTUM of ENERGY
- A photon is a quantum of energy
- Light is packaged in units called QUANTA

Spectra

- Radiation made of one wavelength is called MONOCHROMATIC
- Most common radiation sources produce a number of different wavelengths which can be separated into a SPECTRUM
- A rainbow is a CONTINUOUS SPECTRUM
- Atomic Absorption and Emission Spectra

Line Spectra

- Some sources produce only a line spectrum of specific wavelengths
- Elements have characteristic LINE SPECTRA
- BLUE higher energy shorter wavelength
- RED lower energy longer wavelength
- ROYGBIV goes low to high energy

Wave functions

Standing Wave

It is important to note that electrons behave as BOTH wave and particles.

This is called a wave-particle duality.

BOHR's MODEL

- An electron in a permitted orbit is said to be in an "allowed" energy state
- Without radiant energy an electron remains in an allowed energy state
- With radiant energy the electron changes from one allowed state to another
- $\triangle E = hv$

HEISENBERG's UNCERTAINTY PRINCIPLE

- It is impossible to know BOTH the momentum and location of the electron simultaneously
- How is this a contradiction to Bohr's model?

Quantum mechanics

Don't be AFRAID

Describes
 mathematically the
 wave properties of the
 electron

 ψ Psi – wave functions ψ^2 = zero is called a NODE

of nodes increases with increasing n

Probability that an electron will be found at that location

Electron clouds or electron density

Principle quantum number

- n = allowed orbit
- n is the principle quantum number and it is the same as the energy level
- The radius of the electron orbit in a particular energy state varies as n²
- The number of electrons in an energy level
 =2n²
- RADIUS = n^2 (5.30 x 10⁻¹¹m) Bohr's radius

Quantum numbers

- (1) Principle quantum number= n (energy level)
- (2) Azimuthal or angular quantum number
 - _ = [
 - Defines the shape of the orbital
 - Cannot be larger than n-1

- (3)Mangetic quantum number = m_I
 - Describes the orietation in space
 - Along the x, y, or z axis
- (4)Magnetic spin + $\frac{1}{2}$ or $-\frac{1}{2}$

4 numbers to identify the specific electron Example: 4, 0, 0, 1/2

Stuff

- Energy increases with increasing n
- Pauli Exclusion Principle
 - No two electrons in an atom can have the same set of four quantum numbers n, l, m_l, m_s
 - none have the same address
- Electron Spin
- Hund's Rule

- Hund's Rule
 - School bus
 - Electrons fill degererate orbitals (same energy) one at a time and then go back to put in second electron
- Electron spin
 - Designated by positive or negative one/half
 - Spin in opposite directions
 - Give balance

Electron Configurations and the Periodic Table

- Review ending electron configurations
- Families
- Groups
- Exceptions in d-block